Sains Malaysiana 53(12)(2024): 3895-3906

http://doi.org/10.17576/jsm-2024-5312-05

 

Unveiling Common Pathways and Potential Drug Targets for Ulcerative Colitis and IgG4-Related Disease through Bioinformatics Analysis

(Mendedahkan Laluan Biasa dan Sasaran Dadah Berpotensi untuk Kolitis Ulseratif dan Penyakit Berkaitan IgG4 melalui Analisis Bioinformatik)

 

QUAN LIAO1#, HONGJIAN ZHANG1#, FANGYUAN ZHOU1, HUASHENG LIN2, XIONGWEI ZHENG1, ZHIYUN WENG3, KAIYUE LI4, ZHENG WAN1, & HENG PAN1*

 

1Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen City, 361000, Fujian, China
2Guangdong Medical University, Dongguan City, 523000, Guangdong, China.
3Department of Hematology, Yueqing People’s Hospital, Yueqing City, 325600, Zhejiang, China
4Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510405, Guangdong, China

 

Received: 16 July 2024/Accepted: 8 October 2024

 

#These authors contribute equally to this work

 

Abstract

Patients with ulcerative colitis (UC) are at an increased risk of developing IgG4 related diseases (IgG4-RD). However, the molecular mechanisms are not known. This study aimed to investigate the potential molecular mechanisms and drugs to treat both UC and IgG4-RD. GSE42911 and GSE40568 datasets were intersected to generate common differentially expressed genes (DEGs). The DEGs were then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. After a protein-protein interaction network (PPI) analysis, hub genes and transcriptional regulators (TFs) were tracked. Finally, potential therapeutic drugs were predicted by the DGIDB drug database. A total of 212 common DEGs were identified in between UC and IgG4-RD. Functional enrichment revealed DEGs enriched in ‘cytoplasm’, and ‘RNA binding’. Furthermore, KEGG pathway analysis identified significant enrichment in ‘Hippo signaling’. The PPI network was enriched with 162 genes/nodes and 532 edges. Additionally, hub genes and associated with 41 TFs and 18 miRNAs were found. Finally, 16 potential drugs targeted to four hub genes were found. In summary, these findings provide novel insights into the pathophysiology of UC and IgG4-RD, highlighting potential molecular targets and drug candidates for therapeutic intervention. The identified drugs could pave the way for targeted therapies, potentially improving clinical outcomes for patients suffering from these conditions and offering a new direction for treatment strategies in both UC and IgG4-RD.

 

Keywords: Bioinformatics; drug molecule; IgG4 related diseases; protein-protein interaction; ulcerative colitis

 

Abstrak

Pesakit dengan kolitis ulseratif (UC) mempunyai risiko yang lebih tinggi untuk mendapat penyakit berkaitan IgG4 (IgG4-RD). Walau bagaimanapun, mekanisme molekulnya tidak diketahui. Penyelidikan ini bertujuan untuk mengkaji mekanisme molekul dan dadah yang berpotensi untuk merawat kedua-dua UC dan IgG4-RD. Dataset GSE42911 dan GSE40568 bersilang untuk menghasilkan gen biasa terekspres secara berbeza (DEG). DEG kemudiannya tertakluk kepada analisis Ontologi Gen (GO) dan Ensiklopedia Gen dan Genom Kyoto (KEGG). Selepas analisis rangkaian interaksi protein-protein (PPI), gen hab dan pengawal selia transkrip (TF) telah dijejaki. Akhirnya, dadah terapeutik yang berpotensi telah diramalkan oleh pangkalan data dadah DGIDB. Sebanyak 212 DEG biasa dikenal pasti antara UC dan IgG4-RD. Pengayaan berfungsi menunjukkan DEG yang diperkaya dalamsitoplasma’ dan ‘pengikatan RNA’. Tambahan pula, analisis laluan KEGG mengenal pasti pengayaan yang ketara dalamIsyarat Hippo’. Rangkaian PPI telah diperkaya dengan 162 gen/nod dan 532 segi. Selain itu, gen hab dan dikaitkan dengan 41 TF dan 18 miRNA ditemui. Akhirnya, 16 dadah berpotensi yang disasarkan kepada empat gen hab ditemui. Ringkasnya, penemuan ini memberikan pandangan baharu tentang patofisiologi UC dan IgG4-RD, menonjolkan sasaran molekul yang berpotensi dan calon dadah untuk campur tangan terapeutik. Dadah yang dikenal pasti boleh membuka jalan untuk terapi bersasar yang berpotensi meningkatkan hasil klinikal untuk pesakit yang mengalami keadaan ini dan menawarkan arah baharu untuk strategi rawatan dalam kedua-dua UC dan IgG4-RD.

 

Kata kunci: Bioinformatik; interaksi protein-protein; kolitis ulseratif; molekul dadah; penyakit berkaitan IgG4

 

REFERENCES

Akalin, P.K. 2006. Introduction to bioinformatics. Molecular Nutrition & Food Research 50(7): 610-619.

Arisaka, T., Kanazawa, M., Tominaga, K., Takahashi, F., Takenaka, K., Sugaya, T., Arisaka, O., Irisawa, A. & Hiraishi, H. 2019. Hematemesis due to drug allergy to oral prednisolone in a patient with ulcerative colitis. Internal Medicine 58(8): 1093-1096. doi: 10.2169/internalmedicine.1639-18

Bruno, M.E., West, R.B., Schneeman, T.A., Bresnick, E.H. & Kaetzel, C.S. 2004. Upstream stimulatory factor but not c-Myc enhances transcription of the human polymeric immunoglobulin receptor gene.  Mol. Immunol. 40(10): 695-708. doi: 10.1016/j.molimm.2003.09.004

Chen, L., Li, J., Ye, Z., Sun, B., Wang, L., Chen, Y., Han, J., Yu, M., Wang, Y., Zhou, Q., Seidler, U., Tian, D. & Xiao, F. 2020. Anti-high mobility group box 1 neutralizing-antibody ameliorates dextran sodium sulfate colitis in mice.  Front Immunol. 11: 585094. doi: 10.3389/fimmu.2020.585094

Chen, Y., Lin, W., Yang, H., Wang, M., Zhang, P., Feng, R., Chen, H., Peng, L., Zhang, X., Zhao, Y., Zeng, X., Zhang, F., Zhang, W. & Lipsky, P.E. 2018. Aberrant expansion and function of follicular helper T cell subsets in IgG4-related disease.  Arthritis Rheumatol. 70(11): 1853-1865. doi: 10.1002/art.40556

Cho, Y., Bae, H.G., Okun, E., Arumugam, T.V. & Jo, D.G. 2022. Physiology and pharmacology of amyloid precursor protein. Pharmacol. Ther. 235: 108122. doi: 10.1016/j.pharmthera.2022.108122

Deng, F., Peng, L., Li, Z., Tan, G., Liang, E., Chen, S., Zhao, X. & Zhi, F. 2018. YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal, regeneration and tumorigenesis after DSS-induced injury. Cell Death & Dis. 9(2): 153. doi: 10.1038/s41419-017-0244-8

Du, L. & Ha, C. 2020. Epidemiology and pathogenesis of ulcerative colitis.  Gastroenterol. Clin. North Am. 49(4): 643-654. doi: 10.1016/j.gtc.2020.07.005

Eyzaguirre-Velasquez, J., Gonzalez-Toro, M.P., Gonzalez-Arancibia, C., Escobar-Luna, J., Beltran, C.J., Bravo, J.A. & Julio-Pieper, M. 2021. Sertraline and citalopram actions on gut barrier function. Dig. Dis. Sci. 66(11): 3792-3802. doi: 10.1007/s10620-020-06702-8

Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranasic, D., Santana-Garcia, W., Tan, G., Cheneby, J., Ballester, B., Parcy, F., Sandelin, A., Lenhard, B., Wasserman, W.W. & Mathelier, A. 2020. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Research 48(D1): D87-D92. doi: 10.1093/nar/gkz1001

Fouad, M.R., Salama, R.M., Zaki, H.F. & El-Sahar, A.E. 2021. Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFkappaB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int. Immunopharmacol. 92: 107354. doi: 10.1016/j.intimp.2020.107354

Ikeda, T., Hikichi, T., Miura, H., Shibata, H., Mitsunaga, K., Yamada, Y., Woltjen, K., Miyamoto, K., Hiratani, I., Yamada, Y., Hotta, A., Yamamoto, T., Okita, K. & Masui, S. 2018. Srf destabilizes cellular identity by suppressing cell-type-specific gene expression programs. Nature Communications 9: 1387. doi: 10.1038/s41467-018-03748-1

Janse, M., Lamberts, L.E., Franke, L., Raychaudhuri, S., Ellinghaus, E., Muri Boberg, K., Melum, E., Folseraas, T., Schrumpf, E., Bergquist, A., Bjornsson, E., Fu, J., Jan Westra, H., Groen, H.J., Fehrmann, R.S., Smolonska, J., van den Berg, L.H., Ophoff, R.A., Porte, R.J., Weismuller, T.J., Wedemeyer, J., Schramm, C., Sterneck, M., Gunther, R., Braun, F., Vermeire, S., Henckaerts, L., Wijmenga, C., Ponsioen, C.Y., Schreiber, S., Karlsen, T.H., Franke, A. & Weersma, R.K. 2011. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9.  Hepatology 53(6): 1977-1985. doi: 10.1002/hep.24307

Jiang, S., Wu, W., Tomita, N., Ganoe, C. & Hassanpour, S. 2020. Multi-Ontology Refined Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic representation model for biomedical concepts. J. Biomed. Inform. 111: 103581. doi: 10.1016/j.jbi.2020.103581

Kanauchi, Y., Yamamoto, T., Yoshida, M., Zhang, Y., Lee, J., Hayashi, S. & Kadowaki, M. 2022. Cholinergic anti-inflammatory pathway ameliorates murine experimental Th2-type colitis by suppressing the migration of plasmacytoid dendritic cells. Sci. Rep. 12(1): 54. doi: 10.1038/s41598-021-04154-2

Katsuyama, T., Martin-Delgado, I.J., Krishfield, S.M., Kyttaris, V.C., & Moulton, V.R. 2020. Splicing factor SRSF1 controls T cell homeostasis and its decreased levels are linked to lymphopenia in systemic lupus erythematosus.  Rheumatology (Oxford) 59(8): 2146-2155. doi: 10.1093/rheumatology/keaa094

Koizumi, S., Kamisawa, T., Kuruma, S., Tabata, T., Chiba, K., Iwasaki, S., Endo, Y., Kuwata, G., Koizumi, K., Shimosegawa, T., Okazaki, K. & Chiba, T. 2013. Immunoglobulin G4-related gastrointestinal diseases, are they immunoglobulin G4-related diseases? World J. Gastroenterol. 19(35): 5769-5774. doi: 10.3748/wjg.v19.i35.5769

Kuo, H.H., Chen, C.H. & Wu, S.Y. 2021. Debulking surgery combined with low-dose oral prednisolone and azathioprine for intractable IgG4-related orbital disease: A case report. Medicina (Kaunas) 57(5): 448. doi: 10.3390/medicina57050448

Kusner, D.J., Hall, C.F. & Jackson, S. 1999. Fc gamma receptor-mediated activation of phospholipase D regulates macrophage phagocytosis of IgG-opsonized particles. Journal of Immunology 162(4): 2266-2274.

Kuwata, G., Kamisawa, T., Koizumi, K., Tabata, T., Hara, S., Kuruma, S., Fujiwara, T., Chiba, K., Egashira, H., Fujiwara, J., Arakawa, T., Momma, K. & Horiguchi, S. 2014. Ulcerative colitis and immunoglobulin G4. Gut Liver 8(1): 29-34. doi: 10.5009/gnl.2014.8.1.29

Lanzillotta, M., Fernandez-Codina, A., Culver, E., Ebbo, M., Martinez-Valle, F., Schleinitz, N. & Della-Torre, E. 2021. Emerging therapy options for IgG4-related disease. Expert Rev. Clin. Immunol. 17(5): 471-483. doi: 10.1080/1744666X.2021.1902310

Lees, C.W., Barrett, J.C., Parkes, M. & Satsangi, J. 2011. New IBD genetics: Common pathways with other diseases. Gut 60(12): 1739-1753. doi: 10.1136/gut.2009.199679

Lindo Ricce, M., Martin Dominguez, V., Real, Y., Gonzalez Moreno, L., Martinez Mera, C., Aragues Montanes, M., Gordillo Velez, C.H. & Gisbert, J.P. 2016. Ulcerative colitis associated with autoimmune pancreatitis, sialadenitis and leukocytoclastic vasculitis. Gastroenterol. Hepatol. 39(3): 214-216. doi: 10.1016/j.gastrohep.2015.02.004

Long, Y., Xia, C., Xu, L., Liu, C., Fan, C., Bao, H., Zhao, X. & Liu, C. 2020. The imbalance of circulating follicular helper T cells and follicular regulatory T cells is associated with disease activity in patients with ulcerative colitis. Front. Immunol. 11: 104. doi: 10.3389/fimmu.2020.00104

Lu, C., Li, S., Qing, P., Zhang, Q., Ji, X., Tang, Z., Chen, C., Wu, T., Hu, Y., Zhao, Y., Zhang, X., He, Q., Fox, D.A., Tan, C., Luo, Y. & Liu, Y. 2023. Single-cell transcriptome analysis and protein profiling reveal broad immune system activation in IgG4-related disease. JCI Insight 8(17): e167602. doi: 10.1172/jci.insight.167602

Lu, J.W., Rouzigu, A., Teng, L.H. & Liu, W.L. 2021. The construction and comprehensive analysis of inflammation-related ceRNA networks and tissue-infiltrating immune cells in ulcerative progression. Biomed. Research International 2021: 6633442. doi: 10.1155/2021/6633442

Luo, Y., Yu, M.H., Yan, Y.R., Zhou, Y., Qin, S.L., Huang, Y.Z., Qin, J. & Zhong, M. 2020. Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis.  Journal of Cellular and Molecular Medicine 24(19): 11330-11342. doi: 10.1111/jcmm.15726

Maden, S.F. & Acuner, S.E. 2021. Mapping transcriptome data to protein-protein interaction networks of inflammatory bowel diseases reveals disease-specific subnetworks.  Frontiers in Genetics 12: 688447. doi: 10.3389/fgene.2021.688447

Nowak, J.K., Adams, A.T., Kalla, R., Lindstrom, J.C., Vatn, S., Bergemalm, D., Keita, A.V., Gomollon, F., Jahnsen, J., Vatn, M.H., Ricanek, P., Ostrowski, J., Walkowiak, J., Halfvarson, J., Satsangi, J. & IBD Character Consortium. 2022. Characterisation of the circulating transcriptomic landscape in inflammatory bowel disease provides evidence for dysregulation of multiple transcription factors including NFE2, SPI1, CEBPB, and IRF2. J. Crohns Colitis 16(8): 1255-1268. doi: 10.1093/ecco-jcc/jjac033

Pandey, S.C., Roy, A., Xu, T. & Mittal, N. 2001. Effects of protracted nicotine exposure and withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat brain. J. Neurochem. 77(3): 943-952. doi: 10.1046/j.1471-4159.2001.00309.x

Park, S.H., Kim, J., Yu, M., Park, J.H., Kim, Y.S. & Moon, Y. 2016. Epithelial cholesterol deficiency attenuates human antigen R-linked pro-inflammatory stimulation via an SREBP2-linked circuit. J. Biol. Chem. 291(47): 24641-24656. doi: 10.1074/jbc.M116.723973

Qin, Z., Wan, J.J., Sun, Y., Wu, T., Wang, P.Y., Du, P., Su, D.F. Yang, Y. & Liu, X. 2017. Nicotine protects against DSS colitis through regulating microRNA-124 and STAT3. J. Mol. Med. (Berl) 95(2): 221-233. doi: 10.1007/s00109-016-1473-5

Sanford, A.N., Dietzmann, K. & Sullivan, K.E. 2005. Apoptotic cells, autoantibodies, and the role of HMGB1 in the subcellular localization of an autoantigen. Journal of Autoimmunity 25(4): 264-271. doi: 10.1016/j.jaut.2005.08.005

Saraiva-Mangolin, S., Vaz, C.D., Ruiz, T., Mazetto, B.M. & Orsi, F.A. 2021. Use of hydroxychloroquine to control immune response and hypercoagulability in patients with primary antiphospholipid syndrome. European Journal of Internal Medicine 90: 114-115. doi: 10.1016/j.ejim.2021.05.025

Segal, J.P., LeBlanc, J.F. & Hart, A.L. 2021. Ulcerative colitis: An update. Clin. Med. (Lond) 21(2): 135-139. doi: 10.7861/clinmed.2021-0080

Singh, A., Fenton, C.G., Anderssen, E. & Paulssen, R.H. 2022. Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis.  International Journal of Colorectal Disease 37(6): 1321-1333. doi: 10.1007/s00384-022-04176-w

Umehara, H., Okazaki, K., Masaki, Y., Kawano, M., Yamamoto, M., Saeki, T., Matsui, S., Yoshino, T., Nakamura, S., Kawa, S., Hamano, H., Kamisawa, T., Shimosegawa, T., Shimatsu, A., Nakamura, S., Ito, T., Notohara, K., Sumida, T., Tanaka, Y., Mimori, T., Chiba, T., Mishima, M., Hibi, T., Tsubouchi, H., Inui, K. & Ohara, H. 2012. Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod. Rheumatol. 22(1): 21-30. doi: 10.1007/s10165-011-0571-z

Ungaro, R., Mehandru, S., Allen, P.B., Peyrin-Biroulet, L. & Colombel, J-F. 2017. Ulcerative colitis. The Lancet 389(10080): 1756-1770. doi: 10.1016/s0140-6736(16)32126-2

Xie, Z., Wang, Y., Yang, G., Han, J., Zhu, L., Li, L. & Zhang, S. 2021. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis. 12(1): 79. doi: 10.1038/s41419-021-03395-3

Yang, Y., Hua, Y., Zheng, H., Jia, R., Ye, Z., Su, G., Gu, Y., Zhan, K., Tang, K., Qi, S., Wu, H., Qin, S. & Huang, S. 2024. Biomarkers prediction and immune landscape in ulcerative colitis: Findings based on bioinformatics and machine learning. Computers in Biology and Medicine 168: 107778. doi: 10.1016/j.compbiomed.2023.107778

Zen, Y., Liberal, R., Nakanuma, Y., Heaton, N. & Portmann, B. 2013. Possible involvement of CCL1-CCR8 interaction in lymphocytic recruitment in IgG4-related sclerosing cholangitis. J. Hepatol. 59(5): 1059-1064. doi: 10.1016/j.jhep.2013.06.016

Zhang, J., Guo, J., Dzhagalov, I. & He, Y.W. 2005. An essential function for the calcium-promoted Ras inactivator in Fc gamma receptor-mediated phagocytosis. Nature Immunology 6(9): 911-919. doi: 10.1038/ni1232

Zhao, X., Cui, D., Yuan, W., Chen, C. & Liu, Q. 2022. Berberine represses Wnt/β-catenin pathway activation via modulating the microRNA-103a-3p/Bromodomain-containing protein 4 axis, thereby refraining pyroptosis and reducing the intestinal mucosal barrier defect induced via colitis.  Bioengineered 13(3): 7392-7409. doi: 10.1080/21655979.2022.2047405

Zheng, C., Lu, T. & Fan, Z. 2021. miR-200b-3p alleviates TNF-alpha-induced apoptosis and inflammation of intestinal epithelial cells and ulcerative colitis progression in rats via negatively regulating KHDRBS1. Cytotechnology 73(5): 727-743. doi: 10.1007/s10616-021-00490-3

Zhou, G.Y., Soufan, O., Ewald, J., Hancock, R.E.W., Basu, N. & Xia, J.G. 2019. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research 47(W1): W234-W241. doi: 10.1093/nar/gkz240

Zhu, M., Min, S., Mao, X., Zhou, Y., Zhang, Y., Li, W., Li, L., Wu, L., Cong, X. & Yu, G. 2022. Interleukin-13 promotes cellular senescence through inducing mitochondrial dysfunction in IgG4-related sialadenitis. Int. J. Oral. Sci. 14(1): 29. doi: 10.1038/s41368-022-00180-6

 

*Corresponding author; email: pheng84@163.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next